Universal Transformers

Thanks to Stephan Gouws for his help on writing and improving this blog post. Transformers have recently become a competitive alternative to RNNs for a range of sequence modeling tasks. They address a significant shortcoming of RNNs, i.e. their inherently sequential computation which prevents parallelization across elements of the input sequence, whilst still addressing the […]

SIGIR2018 Workshop on Learning From Noisy/Limited Data for IR

We are organizing the “Learning From Noisy/Limited Data for Information Retrieval” workshop which is co-located with SIGIR 2018. This is the first edition of this workshop and The goal of the workshop is to bring together researchers from industry, where data is plentiful but noisy, with researchers from academia, where data is sparse but clean, to […]

Fidelity-Weighted Learning

Our paper “Fidelity-Weighted Learning”, with Arash Mehrjou, Stephan Gouws, Jaap Kamps, Bernhard Schölkopf, has been accepted at Sixth International Conference on Learning Representations (ICLR2018). \o/ [perfectpullquote align=”full” bordertop=”false” cite=”” link=”” color=”” class=”#16989D” size=”16″] tl;dr Fidelity-weighted learning (FWL) is a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. It modulates the parameter updates to […]

Learning to Attend, Copy, and Generate for Session-Based Query Suggestion

Our paper “Learning to Attend, Copy, and Generate for Session-Based Query Suggestion”, with Sascha Rothe, Enrique Alfonseca, and Pascal Fleury, has been accepted as a long paper at the international Conference on Information and Knowledge Management (CIKM’17). This paper is on the outcome of my internship at Google Research. \o/ Users interact with search engines […]

Share your Model instead of your Data!

Our paper “Share your Model instead of your Data: Privacy Preserving Mimic Learning for Ranking”, with Hosein Azarbonyad, Jaap Kamps, and Maarten de Rijke, has been accepted at Neu-IR: SIGIR Workshop on Neural Information Retrieval (NeuIR’17). \o/ [perfectpullquote align=”full” cite=”” link=”” color=”” class=”” size=”14″]In this paper, we aim to lay the groundwork for the idea […]

Beating the Teacher: Neural Ranking Models with Weak Supervision

Our paper “Neural Ranking Models with Weak Supervision”, with Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce Croft, has been accepted as a long paper at The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR2017). \o/ This paper is on the outcome of my pet project during my internship […]

SIGIR2017 Tutorial on “Neural Networks for Information Retrieval”

We will be giving a full day tutorial on “Neural Networks for Information Retrieval”, with Tom Kenter, Alexey Borisov, Christophe Van Gysel, Maarten de Rijke, Bhaskar Mitra at The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR2017). \o/ The aim of this full-day tutorial is to give a clear overview […]

Modeling Retrieval Problem using Neural Networks

Despite the buzz surrounding deep neural networks (DNN) models for information retrieval, the literature is still lacking a systematic basic investigation on how generally we can model the retrieval problem using neural networks. Modeling the retrieval problem in the context of neural networks means the general way that we frame the problem with regards to […]